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Abstract

For a given type of travel time function and travel
time parameters, a data matrix is generated
for a time window centered around this travel
time for each spatial data channel. We normally
compute a coherence measure from the data matrix
corresponding to these travel time parameters. There
are two main classes of normalized coherence
measures. Generalized semblance which is
normalized between zero and one, and so-called
high-resolution coherence measures which are
bounded from below.

Singular value decomposition (SVD) of the data matrix
results in several new types of generalized semblance.
The first SVD subspace or eigenimage gives three
different generalized semblance coefficients which
take into account the main signal energy for a signal
with the travel time corresponding to the parameters
which were used to generate the data window. They
can all be efficiently computed by the power method.
Velocity analysis was performed on synthetic data
with various noise levels and with amplitude-versus-
offset (AV0) effects and on marine seismic data. The
new semblance functions all gave better results than
the classical one. Our recommendation for signal
parameters estimation (and, in particular, for seismic
velocity estimation) is to compute three coherency
measures: (1) A reduced semblance coefficient,
taking into account only the first eigenimage; (2)
The normalized energy of the first eigenimage and
(3) The logarithm of MUSIC corresponding to the
generalized semblance of the first eigensubspace.
These should be analysed jointly to determine the
travel time parameters for the signal in the data set.

Introdução

Semblance (Taner and Koehler, 1969) is the most
common coherence measure used in seismic velocity
analysis. It is defined as the ratio between the energy
of the estimated signal and the energy of the data in
the analysis window. It is normalized to be between
zero and one. Other coherence measures based on
normalized covariance functions (Neidell and Taner, 1971;

Sguazzero and Vesnaver, 1987) proposed the multiple
signal classification (MUSIC) coherence measure. This
is defined as the inverse of the data projected onto the
noise subspace. It can also be expressed as the inverse
of one minus the projection of the data onto the signal
subspace. Barros et al (2012) define MUSIC as the inverse
of one minus a normalized coherence measure which can
be regarded as a generalized semblance coefficient. It
is normalized to be between zero and one. We propose
a new coherence measure which is defined as the ratio
between the energy of the signal and the energy of the
noise. For uncorrelated signal and noise this is equal to
semblance divided by one minus semblance.

The relationship between semblance and MUSIC
coherence measures has been analysed using the
eigenstructure of the spatial covariance matrix (Biondi
and Kostov, 1989; Kirlin, 1992; Key and Smithson, 1990;
Sacchi, 1998).

Singular value decomposition (SVD), (Golub and
Van Loan, 1996) has been used in seismic data processing
for noise removal (Freire and Ulrych, 1988; Porsani et al.,
2013).

Here we shall use SVD extensively to analyse and
define various types of generalized semblance coefficients
corresponding to different signal and noise models. The
classical semblance coefficient is based on a signal model
which consists of a common time signal which has the
same amplitude on each trace. We assume the same
signal model for the first L eigenimages of the data matrix.
This gives a generalized semblance coefficient which is
the sum of the first L singular values squared times the
square of the average of the elements of the corresponding
spatial singular vector, properly scaled. For L = 1 it gives
the generalized semblance coefficient used by Barros et al.
(2012) in defining MUSIC.

A second type of generalized semblance coefficient is
obtained by assuming a signal model which has the same
time signal on each trace multiplied by a spatially variant
amplitude function. The optimal signal estimate is then the
first eigenimage of the data, and the semblance is the first
singular value squared divided by the energy of the data.
This gives a signal-to-noise energy ratio which is equal to
a scaled and shifted version of one coherence measure
proposed by (Schmidt, 1986; Sacchi, 1998).

By multiplying the two previous generalized semblance
coefficients, corresponding to the first eigenimage, we
obtain a reduced semblance coefficient. It is equal to the
square of the correlation between the first temporal singular
vector and the sum of the traces, normalized by the number
of spatial channels times the squared norm of the data
matrix.
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In the numerical example we compare the classical
semblance coefficient with three generalized semblance
coefficients derived from the first eigenimage. These are
the generalized semblance coefficient for the first SVD
subspace, the normalized energy of the first eigenimage
and the reduced semblance coefficient.

We compute these four semblance coefficients, and
the corresponding logarithm of the MUSIC measure, in
synthetic data examples with various levels of noise. Two
closely spaced arriving signals are modeled with moderate
and strong amplitude-versus-offset (AVO) behaviour. We
also apply the four semblance coefficients, and one
log MUSIC coherence measure, to marine seismic data
from offshore north-east Brazil. Based on analytic
considerations and the numerical results, we finally
propose a new procedure for travel time parameter
estimation.

Normalized coherence measures

We assume that the data d(t,x), function of time t and
direction x, can be represented by a sum of arriving
pulses, sk(t), with different arrival times T (θ k,x) which
have the same form, but different values of the travel time
parameters vector θ . That is

d(t,x) =
K

∑
k=1

sk(t−T (θ k,x))+n(t,x) (1)

where n(t,x) is a noise term. The travel time or arrival time
function may have the form:

T (θ ,x) =

[
T (0)2 +

x2

v2
NMO

]1/2

, θ = [T (0), vNMO], (2)

the hyperbolic travel time approximation used standard
seismic velocity analysis (Mayne, 1962; Taner and Koehler,
1969) where T (0) is zero-offset travel time and vNMO is the
normal moveout velocity (often approximated by stacking
velocity). With a trial value for the travel time parameter
vector θ , the data within a window T (θ ,x)± (Nt − 1)/2)∆t
are aligned with T (θ ,x) to give

d(t j,xn) = D jn = { j = 1, . . . ,Nt ,n = 1, . . . ,Nx} (3)

with Nt ≤ Nx. This procedure is illustrated in Figure 1,
and we use linear interpolation to obtain the data values
between sampling grid points. The data matrix D is the sum
of signal plus noise D = W+N, where the signal matrix W
and the noise matrix N are assumed to be uncorrelated.

The classical coherence measure used in seismic velocity
analysis is semblance (Taner and Koehler, 1969), defined
as the ratio between the signal (W ) energy and the energy
of the data (D), that is

S =
||W||2

||D||2
(4)

We shall study the signal-to-noise energy ratio

Q =
||W||2

||N||2
=

||W||2

||D||2−||W||2
=

S
1−S

(5)

This new coherence measure is unbounded and Q≥ 0.

The MUSIC coherence measure is defined as the inverse
of the steering vector projected onto the noise subspace.
With the assumption of uncorrelated signal and noise,
MUSIC can also be defined as the inverse of one minus the
steering vector projected onto the signal subspace (with
proper normalization). In this way, a generalized MUSIC
coherence measure is (Barros et al., 2012)

P =
1

1−S
= Q+1 (6)

where S can be any generalized semblance coherence
measure normalized so that 0 ≤ S ≤ 1. We see that P is
unbounded and P≥ 1.

SVD subspace coherence measures

The classical semblance coefficient (Taner and Koehler,
1969) is based on the signal model

W = seT (7)

where eT = [1,1, . . . ,1] is an Nx × 1 vector of only one’s
(the steering vector), and the Nt × 1 vector s is the
time signal which is assumed to be the same on all
channels. An optimal estimate of the signal (Ursin, 1979)
is s = (1/Nx)De. Then the semblance is, according to
equation 4:

S =
Nx||ŝ||2

||D||2
=
||De||2

Nx||D||2
(8)

where ||ŝ||2 = ∑
Nt
j=1 ŝ(t j)

2.

In the following we shall use the reduced SVD (Golub and
Van Loan, 1996) of the data matrix

D = UΣVT =
Nt

∑
k=1

ukσkvT
k (9)

where the Nt×1 vectors uk are orthonormal, and the Nx×1
vectors vk are also orthonormal. The singular values σk are
sorted such that σ1 ≥ σ2 ≥ . . . ≥ σNt ≥ 0, assuming Nt ≤Nx.
With equation 9, semblance in equation 8 becomes

S =
∑

Nt
k=1 σ2

k v̄2
k

Nx ∑
Nt
k=1 σ2

k

(10)

with v̄k = vT
k e, being the sum (stack) of all elements in the

vector vk.

We now introduce an SVD based signal and noise model
where the signal is composed of the first L eigenimages
of the data, and the noise is composed of the Nt − L last
eigenimages. That is

D = WL +NNt−L =
L

∑
k=1

ukσkvT
k +

Nt

∑
k=L+1

ukσkvT
k (11)

By averaging the signal matrix we get the estimate

ŝ =
1

Nx
WLe =

1
Nx

L

∑
k=1

ukσk v̄k (12)
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We can define an SVD subspace semblance

SL =
Nx||ŝ||2

||WL||2
=
||WLe||2

Nx||WL||2
=

∑
L
k=1 σ2

k v̄2
k

Nx ∑
L
k=1 σ2

k
(13)

Since v̄2
k = |vT

k e|2 ≤ Nx we have that 0≤ SL ≤ 1. For L = Nt
this is the classical semblance coefficient in equation 10,
and for L = 1 it becomes

SM =
1

Nx
v̄2

1 =
1

Nx
|vT

1 e|2 (14)

This is the function used by Barros et al (2012) to define
the MUSIC coherence measure as in equation 6.

Eigenimage Signal Energy

The signal model in equation 7 corresponds to a common
signal, with unit amplitude on each trace. An extension to
this is to assume that the signal shape, s(t), is the same,
but that there is an amplitude variation a(x). Then the signal
model is

W = saT (15)

A least-squares estimate of the signal is the first
eigenimage (Golub and van Loan, 1996):

W = u1σ1vT
1 (16)

Semblance is computed from equation 4 which gives

SE =
σ2

1

∑
Nt
k=1 σ2

k

=
σ2

1
||D||2

(17)

The signal-to-noise energy ratio is

QE =
σ2

1

∑
Nt
k=2 σ2

k

(18)

Reduced semblance coefficient

The generalized semblance coefficients SM and SE are both
derived from the first eigenimage of the data. The classical
semblance coefficient in equation (10) can be expressed
by

S = SMSE +
∑

Nt
k=2 σ2

k v̄2
k

Nx||D||2
(19)

5 where we have used equation (14) and (17). That is, the
product SMSE contains all the information in the semblance
coefficient related to the first eigenimage. We shall refer to
it as the reduced semblance coefficient.

SR = SMSE =
σ2

1 |vT
1 e|2

Nx||D||2
. (20)

Data examples

Synthetic data were generated with two reflections with the
same T (0) = 1s, and with vNMO = 2500m/s and vNMO =
3000m/s, respectively. The data set consists of 60 traces
from x = 20m to x = 1200m with a sampling distance ∆x =
20m. The data are computed from s = 0.8s to s = 1.4s with
a sampling interval ∆t = 0.004s. The signal with vNMO =
3000m/s has an amplitude which varies from 1.0 at zero
offset to 0.8 at the far offset. The signal with vNMO =
2500m/s has a polarity reversal with amplitude equal to 1.0
at zero offset and amplitude equal to −0.5 at the far offset.
These data are termed AVO data. Three data sets were
prepared with no noise, little noise and much noise, as
shown in Figure 2.

Using a data window of 11 samples, we computed four
types of generalized semblance, S,SM ,SR and SE , and their
corresponding log MUSIC functions, log10 P = − log10(1−
S).

For noise-free AVO data, SE detects both signals with
log10 PE giving enhanced peaks as shown in Figure 3, top
panels. On the AVO data with little and much noise, only
the signal with moderate AVO behaviour can be detected.
SM performs better than SR which is better than S. For AVO
data with much noise, SE has a maximum for the correct
travel time parameters for the signal with moderate AVO
variation, but the image in T (0)− vNMO - plane on Figure 4
is very noisy.

Figure 5, top right, shows a CMP gather from a marine
seismic data set from north-east Brazil. It is recorded
from t = 0s to t = 4s with a sampling interval of ∆t =
0.0004s. There are 60 traces with a minimum offset equal
to 150m and a distance between data channels ∆x = 25m.
Figure 5 also displays S,SR,SM ,SE and log10 PM . these
coherence measures were computed with a time window of
17 samples. These semblance coefficients all gave better
results than the classical one.

Conclusion

We have reviewed, renormalized and extended previous
theory for normalized coherence measures. In travel
time parameters estimation we may use a generalized
semblance coefficient S, normalized such that 0 ≤ S ≤ 1,
or a corresponding high-resolution coherence measure.

The signal-to-noise energy ration and the MUSIC
coherence measure are both related to a generalized
semblance coefficient. They provide improved parameter
estimates only for large values of semblance. For small
values of semblance, they behave like semblance. They
can vary over a large range of values, so they logarithm of
MUSIC is easier to interpret.

Singular value decomposition (SVD) of the data matrix
results in several new types of generalized semblance.
The first SVD subspace or eigenimage gave three different
generalized semblance coefficients which take into account
the main signal energy for a signal with the travel time
corresponding to the parameters which were used to
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generate the data window. They can all be efficiently
computed by the power method. These new semblance
coefficients are: (i) a reduced semblance coefficient, taking
into account only the first eigenimage, (ii) the normalized
energy of the first eigenimage, and (iii) a generalized
semblance coefficient computed from the first eigenimage
or eigensubspace.
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Figure 1: Data analysis window.
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Figure 2: Synthetic AVO data: No noise (a), Little noise (b), Much noise (c).

Figure 3: Semblance (left panels) and log MUSIC (right
panel) for T (0) = 1s and different velocities. Noise-free AVO
data (top panels), little-noise AVO data (middle panels) and
much-noise AVO data (bottom panels).
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Figure 4: Much-noise AVO data. Semblance functions
(left panels), and the respective log MUSIC functions (right
panels).
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Figure 5: Different coherence measures in velocity analysis of marine seismic data.
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